Tuesday, August 7, 2012

Sequencing of malaria genomes reveals challenges, opportunities in battle against parasite

Sequencing of malaria genomes reveals challenges, opportunities in battle against parasite

Monday, August 6, 2012

Genetic variability revealed in malaria genomes newly sequenced by two multi-national research teams points to new challenges in efforts to eradicate the parasite, but also offers a clearer and more detailed picture of its genetic composition, providing an initial roadmap in the development of pharmaceuticals and vaccines to combat malaria.

The research appears in two studies published in the latest issue of the journal Nature Genetics. They focus on Plasmodium vivax (P. vivax), a species of malaria that afflicts humans and the most prevalent human malaria parasite outside Africa, and Plasmodium cynomolgi (P. cynomolgi), a close relative that infects Asian Old World monkeys.

"The bad news is there is significantly more genetic variation in P. vivax than we'd thought, which could make it quite adept at evading whatever arsenal of drugs and vaccines we throw at it," said Professor Jane Carlton, senior author on both studies and part of New York University's Center for Genomics and Systems Biology. "However, now that we have a better understanding of the challenges we face, we can move forward with a deeper analysis of its genomic variation in pursuing more effective remedies."

In one study, the researchers examined P. vivax strains from different geographic locations in West Africa, South America, and Asia, providing the researchers with the first genome-wide perspective of global variability within this species. Their analysis showed that P. vivax has twice as much genetic diversity as the world-wide Plasmodium falciparum (P. falciparum) strains, revealing an unexpected ability to evolve and, therefore, presenting new challenges in the search for treatments.

The second study, performed jointly with Professor Kazuyuki Tanabe at Osaka University, Japan, sequenced three genomes of P. cynomolgi. The researchers compared its genetic make-up to P. vivax and to Plasmodium knowlesi (P. knowlesi), a previously sequenced malaria parasite that affects both monkeys and humans in parts of Southeast Asia.

Their work marked the first time P. cynomolgi genomes have been sequenced, allowing researchers to identify genetic diversity in this parasite. Its similarity to P. vivax means that their results will also benefit future efforts to understand and fight against forms of malaria that afflict humans.

"We have generated a genetic map of P. cynomolgi, the sister species to P. vivax, so we can now push forward in creating a robust model system to study P. vivax," explained Tanabe. "This is important because we can't grow P. vivax in the lab, and researchers desperately need a model system to circumvent this."

###

New York University: http://www.nyu.edu

Thanks to New York University for this article.

This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.

This press release has been viewed 24 time(s).

Source: http://www.labspaces.net/122343/Sequencing_of_malaria_genomes_reveals_challenges__opportunities_in_battle_against_parasite_

margarito margarito horton hears a who horton hears a who cotto margarito big daddy big ten championship game

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.